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Abstract

This note is concerned with the formulation of a damped second order sys-

tem as a first order dynamical system on a product space. This problem comes

from the desire to have explicit representations of the infinitesimal generator of

the first order system and, in particular, of the domain of this operator. This

analysis is motivated by the need to find specific representations for Riccati

operators that can be used in the development of computational schemes for

hyperbolic control problems. The approach we take here is based on a natural

factorization of the differential operators that define the second order model.
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1 Introduction and Motivation

In [2]-[4], Burns and King consider feedback control problems for damped hyperbolic

systems. Specifically, they are concerned with obtaining integral representations of

the feedback control law for purposes of designing reduced order controllers and sen-

sors/actuators. The kernels of these integral representations are called functional

gains. In [4], Burns and King use information about the spatial support of functional

gains to guide the construction of reduced order controllers for a nonlinear damped

elastic system. In order to use this information, it is important to have both quali-

tative and quantitative information about these feedback gains. The very existence

of these kernels is not always obvious and requires careful analysis of the system and

the exact form of the damping model. Indeed, the damping model greatly impacts

these gains (see [2]-[4]). One approach to modelling second order damped systems is

to start with the undamped equation and then "add" a damping term of the form

_/Do2(t) to the second order system. Very often the damping operator Do is assumed

to have the form of a fractional power of the structural operator, i.e., Do = A s for

0 < c_ _< 1. This approach leads to formal models that mimic various damping

models such as structural damping (c_ = 1/2) and Kelvin-Voigt damping (c_ = 1).

However. in order to turn this formal second order system into a well-posed dynami-

cal system on an appropriate state space, one is often faced with having to deal with

fractional powers of differential operators leading to pseudo-differential operators. In

this note we present several formulations of this problem, one of which makes use of

physics based modelling. In many cases this approach can greatly simplify the anal-

ysis and the resulting first order system has an explicit representation that avoids

pseudo-differential operators.

2 Abstract Second Order Damped Models

Let H be a Hilbert space. We assume that A is a self-adjoint, strictly positive operator

on H with domain Dora(A) dense in H. Consider the undamped second order control

system

2(t) + Ax(t) = Bu(t), (2.1)

where B is a compact linear operator. It is well known that in this case, (2.1) is not

stabilizable (for example, see [6]). All elastic systems have some internal damping and

the exact form of this damping is important in the analysis and solution of control

problems for elastic systems. In this paper we concentrate on the development of

explicit state space models for the uncontrolled systems. The application of these

models to control design will appear in a future paper.

The general mathematical model often used as a prototype for describing con-

trolled elastic systems with internal damping is obtained by adding a damping term



of the form _rA_2(t) to (2.1) producingthe abstract equation

2(t) + Ax(t) + 7A_2(t) = Bu(t ,

where

0<% O<a_<l.

To write this second order system as a first order dynamical

the spaces

V = Dom(A 1/2)

and

with inner products

and

E = Dom(A 1/2) x H = I t x H,

Wl ' W2 E

respectively.

+ (w,,w2>,,

Let A_ denote the operator defined on E by

 o_[o ,- _TA _ ]

with domain Dom(.4_,) defined by

It is well known (see, [1] and [5]) that the operator 'A_ is densely defined and

dissipative on E and hence closable. The closure of Aa, denoted by Aa, generates a

strongly continuous semigroup on E and the domain, Dom(A_), is given by

D°m(A_) = {[ u ] c=E I w c= t'; {Au +%4_w} c=H} "w (2.7)

Although (2.7) provides one representation of the domain of A_, other (more explicit)

representations can also be obtained. We proceed to describe two formulations of this

closure based on factorizations of A which we denote as Ao,1 and A_,2. In order to keep

this note at a minimal length and yet present the basic ideas, we restrict ourselves to

the case where 1/2 _< a < 1. In this case the following result provides a representation

of Dom(Ao) in terms of the fractional powers of A. The first formulation, Ao,1, is a

special case of Theorem 1.1 in [5].

(2.2)

system one first defines

(2.3)

('2.4)

(2.5)

Dom(,4o) = Dom(A) x [Dom(A '/_) V1Dom(A_)].



Theorem 2.1 If _ _l<a _< 1, then Dom(Ao) = Dom(A_a) where

{ [ u ] E E , u E Dom(A3/2-'_), w E k:Dom(Aa,1) = w

{A1-% + 7w} E Dom(AO)},

and if z E Dorn( Ao,1), then

w = -A_{AI-_u

Moreover, Ao,1 generates an analytic semigroup on E.

(2.s)

+ 7w} ] " (2.9)

One way to view the representation (2.8)-(2.9) is to think of "factoring" (2.2) so
that it is written in the form

_(t) + AO{Al-Ox(t) + 7:b(t)} : Bu(t), (2.10)

and then constructing the first order system based on this model. However, this

approach does not always capture the true physics of the problem. In the next

section we consider a second factorization and compare the corresponding first order

model to the system with A_,I given by (2.8)-(2.9).

3 A Symmetric Factorization

Another factorization of (2.2), that seems equally justified, is based on factoring A

as A = A 1/2 • A 1/2 and writing (2.2) in the form

2(t) + A1/2{A1/2x(t) + 7A_-l/2k(t)} = Bu(t). (3.1)

This is a very natural factorization and it leads to a "physics based" formulation of

the first order model. This form of (2.2) leads us to consider the operator A_,2 defined

on E by

}Dom(A_,e) = z = w • E lu, w • Ij, {A1/2u 4- 7A_-'/2w} • V (3.2)

and for z E Dom(A_,2),

w = -A1/2{AU2u+TA'_-U2w} " (3.3)

At first glance it might appear that A_,I and Aa,2 have little in common. However,

the following result establishes the equivalence between A,,1 and A_,2 for the case

where 1/2 _< a _< 1. Hence, it follows that (3.2)-(3.3) provides another representation

of the closure of .4_.



< a < 1. then Ao = Ao,1 = Ao,2.Theorem 3.1 If _ _ _

1 <c[< 1, then 0<a- 1 < 1 and l < 3Proof. If__ _ _ __ _ __ _-a< 1. It follows that

Dom(A TM) C_ Dom(A 1/2) C_ Dom(AO-_/2).

Let z = [u, w] T C Dom(Ao,1). Vv_ show that z C Dom(Ao,2) and Ao,lz = A(_,2z.

Since z = [u, w] r E Dom(Ao,1), it follows that

u E Dom(A 3/2-_) C_ Dom(A_/2), w E Dom(A 1/2) C_ Dom(A _-1/2)

and

{Al-'_u + 7w} C Dorn(A_).

If y = -Aa{AI-%_ +'_w} E H, then A-my C Dora(At'), where

A-_y = -{A_-Ou + _/w} = -A1/2{AI/2-_u + _/A-1/2w}.

Also,

(3.4)

(3.5)

-{A1/2-'_u + :¢A-1/2w} =- A-1/2-'_y = A-"(A-1/2y) E Dora(A°). (3.6)

Since

A1/2-Ou = A-'_(A1/2u) C Dom(A_),

it follows from (3.6) that _'A-1/2w C Dom(A'_). Hence,

-{A_/2u + _/AO-_/2w} = -A"{A_/2-"u + yA-_/2w} = (A-i/2y) E Dom(A_/2), (3.7)

and

-A1/2{AU2u + "TA'_-1/2w} = y C H. (3.8)

Combining (3.4), (3.7) and (3.8), it follows that z C Dom(A,_,2) and Ac,,2z = A,_,lz.

Conversely, assume that z = [u, w] T E Dom(A_,2). Let

y = -A1/2{A1/2u + ?A_-_/_w} _ H

and observe that

d-_/_y = -{ml/_u + _A_-_/_w} = -d_{A1/:-_u + ?d-_/:w} _ Dom(A_/:), (3.9)

implies

-{A_/_-_u + _,A-U_w} = g-'l_-_y = d-_/_(A-_y) • Dom(AU_). (3.10)

However, "/A-_/_w • Dom(A_/_), so it follows from (3.10) that

A1/2-c_ u • Dom(A_/2).
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Hence,

-A1/2{A'/2-'_u + 7A-'/2w} = -{Al-au + "yw} = (A-_y) • Dom(A_),

and

-A_{AI-_u +'yw} = y • H.

Note that w • V = Dorn(A 1/2) and {Al-Ou + 7w} = A-Oy • Dom(A_).

Al-°u = A-_y - 7w • Dora(A1�2). If _) = A1/2(AI-_u), then

u = Ao-_(A-I/2_) = A_-3/2_ = A-(3/2-_)# • Dora(A3�2-°).

(3.11)

(3.12)

Hence,

Combining (3.4) with (3.11) and (3.12), it follows that z • Dorn(A_,l) and that

A_,iz = A_,2z. This completes the proof.

This result shows that there are several equivalent representations of the closure

of .4_,. Although (2.8)-(2.9) and (3.2)-(3.3) both provide explicit characterizations of

the domain of this closure, both characterizations are in terms of fractional powers

of A. However, the representation (3.2)-(3.3) can be very useful. For example the

following theorem follows from a direct calculation.

1 < a < 1, then the Hilbert adjoint [A_,2]* is defined on the domainTheorem 3.2 If5 - -

{E }Dom([Ao2]*)= z= •Elu, weV, {A_/2u-TA°-I/2w}eV (3.13)
' W

by

-w ]w = A1/2{A1/2u- 7AO-1/2w} "
(3.14)

Observe that although Ao,2 and [Aa,2]* have a similar structure, they have different

domains. In particular, Dom([A,_,2]*) _ Dom(A_,2) and Dom([Aa,2]*)ADom(A_,2) G

Dora(A) x Dom(Aa). Again, the adjoint is given in terms of fractional powers of A,

and in many cases, these operators are pseudo-differential operators without simple

explicit representations. A third approach to this problem is based on returning to

fundamental physics.

4 A Physics Based Factorization

The factorization (3.1) is a special case of a more general form.

operators

S = A 1/2 and D = A _-1/2,

then (3.1) can be written as

2(t) + S*{Sx(t) + _D:_(t)} = Su(t).

If we define the

(4.1)
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Observethat S* = S = A 1/2 since A is assumed to be self-adjoint and positive

definite. Moreover, the basic spaces given in (2.3) - (2.6) are defined in terms of

Dora(S) 53'

and

with inner products

and

"t" = Dom(A 1/2) = Dora(S), (4.2)

E = Dom(S) x H = V × H, (4.3)

<ul, u2)v.. = <Sul, co*_2}H (4.4)

---_ (,5'?_1, SU2> H + <Wl,W2) H : <Ul,U2> V -+- (Wl,W2)H, (4.5)

E

respectively.

However, it is sometimes more useful to use a different factorization. We illustrate

the basic idea by restricting attention to a simple 1D wave equation. Although the

presentation here is focused on this example problem, the approach can be extended

to a wide variety of 2D and 3D problems in elasticity. Consider the problem of an

undamped vibrating string on the interval 0 < s < 1 with fixed left end and free right

end. If w(t, s) denotes the displacement of the string and a(t, s) denotes the stress,

then the wave equation becomes

Ot 2 w(t, s) - a(t, s) = O, (4.6)

with displacement boundary condition at s = 0

w(t, O)=0, (4.7)

and "natural" boundary condition at s = 1

a(t, 1)=0. (4.8)

The strain is defined by e(t, s) = °w(t, s) and if one uses the stress-strain law

a(t, s) = re(t,s), (4.9)

then the equation (4.6) becomes

02 0 {rOw(t,s) }bTw(t,s)- =0. (4.10)

The appropriate boundary conditions are

w(t, 0) = 0, _-Ow(t, 1) =0. (4.11)

6



On the other hand if oneusesa dynamic stress-strain law such as

0

o(t, s) = _c(t, s) + _c(t, s), (4.12)

then the equation (4.6) becomes

02 0 w(t, s) + s)-_w(t,_) - _ _ _o-Tgw(t, =0. (4.13)

In this case the appropriate boundary conditions are now

o. }w(t,0)=0, a(t, 1)= 7- w(t, 1)+_,O-O-_sW(t, 1) =0. (4.14)

The partial differential equation in (4.13) with boundary conditions (4.14) can be

written as a second order system in the space of virtual displacements H = L2(0, 1).

We also introduce the space of deformations (or strains) E = L2(0, 1) and define the

operator S from H into E on the domain

Dom(S) = HI(0,1 ) = {w(.)E Hi(0, 1)] w(0)= 0} (4.15)

by

[sw(.)](s) = d_(s).

Then the adjoint of S is defined on E into H by

Dom(S*) = H_(0, 1)= {(7(.)e Hi(0, 1) 1(7(1)= 0}

(4.16)

(4.17)

and for a(.) E Dora(S*)
.3

[s'(7(.)](s) = -_o(_). (4.18)

If the damping operator D : HL1(0, 1) _ L2(0, 1) is defined by D = S, then the wave

equation (4.13) with boundary conditions (4.14) can be written as

it(t) + S* {rSx(t) + _,Dic(t) } = 0. (4.19)

Observe that we do not distribute S* through the brackets. In fact, (4.19) is

the proper form of the physics based second order model for Kelvin-Voigt damping.

Moreover, the first order form of (4.19) is easily expressed in terms of the basic

operators S and D. To construct the first order model we define the spaces

V= Dora(S)= HI(o, 1) (4.20)

and

E= V x H= Dora(S) x H= HI(0,1) x L2(0, 1), (4.21)



with inner products
(ul, u2)v = (TSul, Su2). (4.22)

and

l[ Ul ] [, _/2 ll___(7_Sul,SU2)H_[. - (Wl,W2)H = (Ul,U2),v.-'[-(Wl,W2)H, (4.23)
Wl IL'2 E

respectively. Now define A on E= H_(0, 1) x L2(0, 1) by

}Dom(.A) = z= c E l u, w E I_; {TSu + TDw} • Dom(S*) (4.24)
W

where for z • Dorn(A),

w = -S*{'rSu +_,Dw} " (4.25)

Note that (4.24) - (4.25) is similar to (3.2) - (3.3) where a = 1. However, there

are two primary differences between the operators ,4 and Am. The operator S is not

a fractional power of A = S*S and S* _ S. Therefore, the operator defined by (4.24)

- (4.25) is (in general) less "complicated" than Au2 and yet we still have the following

easily established result.

Theorem 4.1 The operator A defined by (4.2,[) - (4.25) generates an analytic semi-

group on E= g{(0, 1) x L2(0, 1).

The above theorem has been extended to other PDE based models of elastic

systems. Currently, we are working on a framework that applies to general abstract

second order systems of the form (4.19). This framework has the advantage that the

underlying spaces and operators are basic differential operators defined on standard

Sobolev spaces. In addition, the physics based factorization is the natural choice

when developing approximations (see [1]).

It is interesting to observe that if one starts with the undamped equation (4.10)

with physical boundary conditions (4.11) and simply "adds a damping term", then

it is possible to lose the correct physical boundary conditions. For example, define A

on H = L2(0, 1) with the domain

Dom(A)= {w(') c H2(O, 1)'w(O)=O, dw(1)=O} (4.26)

6 2

[Aw(.)](s) = -_w(,s). (4.27)
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The waveequation (4.6) becomes

_i(t) + Ax(t) = O, (4.28)

and if one adds a damping term with Do = A 1 (i.e. a = 1), one obtains the second

order system

2(t) + _tAJc(t) + Ax(t) = 0. (4.29)

Note that (4.29) is actually the abstract form of the damped wave equation

ot2w(t,s) - -_s ; w(t,s) + _/O-_sw(t,s) =0, (4.30)

with boundary conditions

=o,

However, the correct physical boundary conditions (given by (4.7) and (4.8)) should

be

0. }w(t, 0)=0, 7- w(t, 1)+_/O--[_sW(t, 1) =0. (4.31)

Therefore, the system (4.29) is not the abstract form of the physics based model

defined by the partial differential equation (4.30) with boundary conditions (4.31).

We close by remarking that although (4.29) does not "capture" the correct physical

boundary conditions, that is not to say that A_,I defined by (2.8)- (2.9) is not im-

portant in the study of such systems. However, it is crucial to understand that this

system may not be the abstract form of the physical problem that is under control.

5 Conclusions

In this paper, we present three formulations of the abstract form of damped second

order systems based upon different factorizations of the structural operator. One form

which is based upon the physics is especially useful in that the underlying operators

are differential operators with simple explicit representations. Further, this form

captures the physics, specifically, the correct boundary conditions. This formulation

has been extended to other PDE based models of elastic systems. Additionally, we

are currently working on a framework that applies to general abstract second order

systems of the form (4.19). This framework has the advantage that the underlying

spaces and operators are basic differential operators defined on standard Sobolev

spaces. Moreover, this framework is a natural choice when developing approximations

(see [1]).
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